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Abstract

in this paper the implementation of a parallel
O(l,og  N ) algorithm for computation of rigid rnulti-
body dynamics on a llypercube hlIhlI) parallel archit-
ecture is presented. To our knowledge, this is the
first algorithm that achieves the time lower bound of
0(1.ogN) by using an o~)tinlal number of O(N) pro-
cessors. Ilowcver, in addition to its theoretical signifi-
cance, the algorithm is also highly efficient for practi-
cal implementation on commercially available hflhll)
parallel architectures due to its highly coarse grain
size and simple communication and syr)chronization
rcquirernents.  }Ve present a multilevel parallel comp-
utation strategy for implementation of the algorithm
on a Ilypcrcuhe.  This strategy allows the exploitation
of i~aralielisrn  at several computational levels as well
as Inaxilnurn  overlapping of computation and con~nlu-
nication  to increrwe the ~)erformance  of parallel conl-
J)utatio[l.

J. Introduction

~’he multibody  dynamics problem concerns the de-
termination of the motion of the mechanical system
resulting from the application of a set of control forces.
II) the context of robotic applications, the problem is
more known as forward dynamics problem. In this pa-
per we consider a multibody system with a serial chain
topology. However, our results can be extended to sys-
telns  with other topologies, e.g., closed-chain topology
[1,2].

In brief mathematical terms, the multibody  dynam-
ics probleln  call be stated as the solution of a lillcar
system

● Q = 7  –b(O, Q, F~; )=77, or

(j=M-~3T (1)

“1’he vector b(d, Q, 1’E)  represents the nonlinear terms
w}lich  can be computed by using the recursive
INewton-I:uler  (N-E) algorithm [3] while settirlg  the
vector of joint accelerations, Q, to zero. In

l;q. ( 1), 77 = 7 – b(d, Q) S COI{};, }cW represents
t}le acceleration-dependent component of the control
forces.

At present it seerrls that the dm’elopment  of serial
algorithms for the problem has reached a certain level
of tnaturity. ‘1’hese  algorithms can be classified as the
0(N3) algorithm [4], the 0(N2)  algorithm [5], and
the O(N) algorithms [6-9]. Ilowever, despite the sig-
nificant improvement in efficiency of serial algorithms,
even the fastest algorithm is still far fro[n providil)g
the real-time or f~ter-than-real-time simulation ca-
pability. ‘l’his suggests that any further significant
improvement in computational efficiency can only be
achieved through exploitation of parallclisrn.

l’he development of eftlcient parallel algorithms for
Inultibody  dynamics is a rather challenging problem.
It represents a very interesting example for which the
analysis of the efficiency of a given algorithm for par-
allel cornprrtation  is far different and more cornplcx
than that for serial computation. In fact, our previous
analysis [10,1 1], which is also supported by the results
of this paper, clearly indicate that those algorithms
that are less efficient (in terms of either asymptotic
colnplexity  or number of operations) for serial conl-
putation provide a higher degree of parallelism and
hcrlce are more efTicient for parallel computation.

A preliminary investigation of parallelism in conl-
})utation of the problem by analyzing the efllciency
of existing algorithms for parallel computation is re-
ported in [10]. The main result of this investigatio]l
call be summarized as follows.

1. ‘1’he existing O(N) algorithms are strictly serial,
that is, their parallelization  results in O(N) par-
allel algorithms which are faster than their serial
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Number of I)egrees-Of- Freedolll
(I) OF) of the systeln
cost of multiplication and
addition
I’osition vector from o, to Oi,

~):+  1,: = ~):

3 x 3 matrix dmcrihing  the
orientation of frame i+ 1 with
respect to frame i
?lIass of link i
Second  moment  of mass of Iit]k i
al)out  its center  of mass
First  and Second \lo~nent  of nlass
of link i about point O,
Symmetric f’ositivc l)efinite  (S1)l))
tnass  matrix
Position, velocity, and acceleration
of joint i
Applied (control) force on joint i
Angular velocity and acceleratiotl
of link i
IJinear  velocity and acceleration
of link i (I)oint 01)
l:orce and molnetlt  of interaction
Ibetwcen link i-1 and link i

S~mtial Quantities

Ifl Spatial axis (map matrix) of
~>ibxk for a jointjoint i, 11, &Jr

with k DOFS
<’(i, i+ l):~r;x6 A 6 x 6 matrix used for pro-

jection of spatial vectors, given
in frame i -t 1, onto fra~ne  i

C(i,i-t 1)=

[

c(i, i+l) o
0 c(i, i+l) 1

l,, JfX6X6  S~)atial Inertia of body i at,out
I)oint Oj , 1,,1 = /,

1:= [ff :’(J1
(7’ deno~es transpose)

[1‘; “ ) E!JY S~]at  ial force of il]teraction
between link i-1 and link i

~’~;:~~ l;xternal spatial force acting
on the l;nd-Eflector  (El)

G1oI)Fc1  Qualltitics

‘H ~ diag{lfi}  Global  lnatrix o f  spa t i a l
axes ,  WcWNx N for a
system with 1 I)OF join’ts.

7 $ Cliag{ll}&3?6Nx6N Global matrix of spatial
inertia, i =- N to 1

0 S COI{O:}CR*’ Global  Vector of joint
positions, i = N to 1

Q : co]{ Q:}&!J?N Global  vector of joint
velocities, i = N to 1

~ ~ COl{Ql}CtiN Global vector of joint
accelerations, i = N to 1

T ~ CO]{ T,}&!)?N Global  vector of apl)lied
joint forces, i = N to 1

U s COl{~~l}C!R6N Global  vector of spatial
acccleratiorls,  i = N to 1

X  : COl{F’~}C3?6N Global vector of spatial
interaction forces, i = N to 1

Bocty I

+

‘1

01 Cl : Center of Mass of Body I

~~

Figure 1. Body, Frames, and Position Vectors
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counterparts only by a stilall  constant factor.

‘1’heoretically,  the time lower hound of 0( f,oq~ .V )
can be achieved by parallel ization  of the 0( .V3 )
algorithms by using 0(N3)  processors.

l’ract.ically, the best parallel algorittlm  results
f r o m  parallelization  of the O(,V3)  algorithn)  by
using a tw~dinlcllsiotlal  array of O(,VQ) procm-
sors.

he ar]alvsis in (101 also led to two imr,ortant  con-
c l u s i o n s  l:he firs[ w~as tltat., if indeed t~here can be
a both time and i~rocessor-oljt  imal parallel algorithm
for tile problem, i.e., a parallel algorithm achieving
tllc time lower bound of O(l,og  N) with O(N) proces-
sors, t,hcn this parallel algorithm can only he derived
by parallelization  of an O(N) serial algorithm, Since
the existing O(N) a]gorithnls  are strictly serial, the
second conclusion \va.s that, the first step  towards de-
veloping such an optimal parallel algorithm is to de-
vise new O(N) algorithms with efficiency for parallel
computation in mind. Such algorithms can only be
derived by a global reformulation of the problem atld
not, an algebraic transforlnation in t lie com~)utat ion of
existing O(N) algorithms.

I’hysically, a given algorilhm  for rntrltibody  dynan~-
ics can be classified based on its force decomposition
strategy. hlathematically, the algorithm can he clas-
sified based o]] the resulting factorization of mass nla-
trix wl]ich corresponds to t}le specific force decompo-
sition (see [1 1,12] for a more detailed discussion). A
new algorithm based on a global reformulation of the
problem is then the one that starts with a dimerent
anti Ilew force decomposition strategy and results in a
Ilew factorization of mass matrix.

Interestingly, a recently developed iterative alg~
rittlm  in [13, 14] represents such a global refornlula-
~ion of the problem. It differs from the existing O(N)
algoritllrn.s in the sense that it is based on a different
strategy for force decomposition. We have shown that
this strategy leads to a new and completely different
factorization of M-l [1 1,12]. ‘l’his factorization, in
turn, results in a new O(N) algorithm for the proble~n
which is designated as the constraint Force (CF) al-
gorithm. A salient feature of the ~F algorithm is that
it is strictly eficient  for parallel cornpttiatlon, that is,
it is less efficient than other O(N) algorithms for serial
computation but  it can be fully parallelized  leading to
a both  time and processor-optimal parallel algorithnl
for the problem, i.e., a parallel 0(1. ogN)  algorithm
wit]]  O(N) processors.

‘1’his parallel algorithnl-  in addition to being theo-
retically  significant by proving, for the first time, the
existence of a both time and processor-optimal par-

allel algori(hm  for the pro blerm is also higl]ly ~)rac-
tical  frotn an irll~>lelllerltatio]l point of view. l’his  is
due to its large grain size and simple communication
and synchronization requirements. l’his  paper is orga-
nized as follows. in \I1, we briefly review the ~F alg~
rittlrn.  Serial inlplernentation  of the (2F’ algorithm is
discussed in jIIJ. The multilevel parallel computation
of tllc (71~ algorithm on the Irypercuhe  is presented in
$IV. f;itially, some discussion and corlcluding rerllariis
arc tnacte ill $V,

Il. The Constraint Force  Algorithm

A. Notation and Preliminaries

In the following derivation, wc make usc of sIJatial
notation (shown with upper-case AfA7’11  S 17’A1.1~’
letters) and global notation (shown with u~~per-c~se
CA I. I. IGRAI’JJIC letters) which lead to a compact
representation of equations. Ilere, only joints with one
revolute  1)01~  are considered. Ilowever, the results
can he extendecl to systems with joints having different
arid/or more 1)01’s.

\Vit h any vector v, a tensor U can be associated
whose re~)resentation in any frame is a skew symmetric
matrix:

[

o –v(z) 1’(Y)
fi=

~~( z ) o –1’(=)
–v(v) ~)(r) o 1

where v(~), V(Y), and v(r) arc the con]l)onents  of L’ ill
the frame coilsidered.  ‘1’he tensor O has tile l~rol)erties
that  ri7’ = – O and ~lt}z = Ul XV?, i,c., it is a vector
cross-product operator. ‘1’he [natrix  j“ sssc]ciated wittl
the vector u is defined as

where here (as well as through the rest of the paper)
C] arid O stand for identify and zero n]atrices  of ap~)r~
i)riate  size. The spatial forces acting at two points .4
and B on a rigid body are related as

F[j = ~’Ai[jFA

where PA,[{  denotes the position vector from l) to .-1.
If tile linear and angular velocities of point A are zero
then

VA = (~A,fl)7tifj

‘1’lle n]atrix  f’A,~J has the properties as ~A,fJ}’~J,(. =
}’A,c and (~A,~)-l = &A.

‘[’he spatial inertia of link z about its center of II~ass,
I1,c,l is given by
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‘1’hc sl)atial  inertia of body i about ~)oint 01 (desig-
nated  m 1, ) is obtained as

(2)

‘J’llis rc~)rcscnts the pfrrrrllcl  arts theorem for ~!ropaga-
tion of spatial inertias.

In deriving the equations of motion, it is assumed
tl)at the nonlinear term 6(0, <?, J’E; ) is explicitly conl-
puted by using the recursive ii-h: algorithm. Similarly
to ttie 0(N3)  and O(A’?)  algorithms [10,13], the cx-
I,licit computation of b(~, Q, l’~;) provides additional
parallelism in the present algorithm which can be ex-
l)loited to further increase the speedup in the compu-
tation,

having computed the term b(~, Q, 1’~;) and subse-
quent Iy YT in Elq. ( 1), the multibody  system can hc
considered as a systcm  at rest which, upon the ap-
plication of control forces 37, accelerates in space
Accordingly, the linearized Newton-Euler equation of
Inotion for rigid body i in the serial chain (Fig. 1 ) is
given by

~ = fi~~~t~-~ + lf,~~ (3)

F’: = ll~+P’F’~+1 (4)

R. lntcrbody  F o r c e  D e c o m p o s i t i o n
Strategy

‘1’lJc iterative algorittlms  developed in [14,15] are
I,a.sed on a decomposition of interbody  force of the
forln:

I“ =  I1:J’2,’ +  Jl”: Ps’ (5)

where l’,si is the constraint force and Wi is the orthog-
onal complement of Hi [16,17], i.e.

IV~’  IIi = O (6)

For joint i with mult iple  DOFS,  say k < 6 DOFS,
){i~ll~xk  and Wi&R6xf6-kJ.  Insofar as the axes of
IJOFS are orthogonal (which is the case considered
in this paper) the matrix Hi is a projection matrix
[16] arid hence

H~Hi z U (7)

It then follows that the matrix W: is also a projection
lnatrix, i.e.,

~~’: ~~i = u (8)

An cxarnple  of structure of matrices }{i and Wi for
onc-l)OF  revolute  joint is given in $111. For a more
detailed discussion on these matrices see [16,17].

“1’be decomposition irl k;q. (5) seclns to be more
natural (atld perhaps more physically’ intuitive) than
ttlat  of tlie Articulated- l]ody Inertia (A II1) algorithm
(I:q. (26) itl [G]) sirlce it expresses the itlterbody  force
in t(,rlns of two physical componerlts: tt)e control
(or tvorking)  force and the constraint (or nonwork-
ing) force. That such a force decomposition has not
been considered as a viable alttrrlative for deriving
algorithms for dtrcct serial and parallel solution of
tl)e I)robleln  is not surprising. I’lie decomposition in
l~q. (5) naturally Icads to the explicit computation of
the constraint (and inter body) forces which has rn~
tivatcd  the designation of the algorithm as constraint
force algorithm. Indeed, researchers have often argued
that since the constraint forces are Ilonworking forces,
their explicit evaluation, whictl leads to the conlputa-
tional  inefficiency, should be avoided. however, while
this argument is in general valid for serial computation
(which is also supported by our results), the explicit
computation of the constraint forces, as shown below,
results in highly efficient parallel algorithms for tk)c
problettl.

C. A Scl~ur Complement  Factorizat ion
of A4-1

In [1 1,12], we have shown that tile force decornpo-
sitiou  in Eq. (5) leads to a new factorization of M-l
as well as a new O(N) algorithm for the prohletn.
IIere, for the sake of complcteliess,  this factorization
of M- 1 is briefly discussed.

First, let us rewrite Eqs. (3)-(4) as

and define a lower bidiagonal  block matrix P as

I ~

u
‘i’N-I  U

–P,v_2 up,, g o
1

\6Nx6,\r5%

100 - f ” ,  [1]

I,et us also define following global vector and matrix
W

.T_s s COl{F’si}CW5~

and

Equations (9)-(10) and (5)-(8) can now be written in
global form as

pT+.y~ (11)
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pf’ z 1)) (12)

F = tif’~ + WF’S (13)

‘1{7’W  = (), W7’~ =  (),~T~  =  [J, and W7’W = [i
(14)

Froln Fqs. (11), (12), and (14) it follows that

v = I-’PF’ (15)

~7’pT~  ,, w~’fiti  = (J (16)

and from Eqs. (15)-(16), we get

w,17p7’~-17, f, ~ t) (17)

Substituting F;q. (13) into ECI.  (17) yields

wTvr’7yHF7’  + WFS) = o

+ wTP7’1-’Pw F~ = –w7’p~I-~pH}’7 (18)

or,
Al’s = –[7F7 (19)

where matr ices d ~ W7’PTjT–  1PlVFSk\5Nx5N and
f) 8 W7PTZ-1P}IEY25NXN  are block tridiagonal.  By
computing 3s from Itq. ( 18) and substituting it into
Eq. (13), we get

~ =  (?t  –  ~V(fi’7’P7’~-  1~~~’)-1W7PT~-l  ~~!)~T
(20)

al]d substituting Eq, (20) into Rq. ( 15) leads to

(
V = I-lP ‘H – W(W7’N’Z-lPW)-1

)
W7’PTI - ‘ PH F7 ( 2 1 )

From l;qs. (11) and (14), ~ is computed M

WTW42  = ?fTPTv * Q = 7’FPTV (22)

Finally, k)y replacing Eq. (21) into (22) it follows that

(
Q  =  ?iTPT2-lPH - WTPTI-’PW

)
(W7P7Z-lPW)-  lWTPTZ-lP}{ r7 (23)

which represents a compact operator form of the O(N)
~F algorithm. In comparison with Eq. ( 1), an opera-
tor form of M- 1, in terms of its decomposition into a
set of simp]e operators, is given m

M-l = ~TpTx-~p/j  – ~7’plI-~pw

(WT?TZ-lPLV)-’ W7’PTI-’PII (24)

where tt]e matrix ~, similar to A and ~, is block tridi-
agonal.  Further  lnore, d and ~ are symmetric and pos-
itive definite (S I)IJ).  A proof of positive definiteness
of A is given in [12] which guarantees t}le existence of
A- ]. A similar procedure can be used to prove the
[)ositive definiteness of c,

‘1’he operator form of M -1 given by Eq. (25) rep-
resents an interesting mathematical construct. ‘1’0 see
this,  consider a matrix L defitied M

~’heII,  C -- f?7A-1f3 is the  Schur Conipletneni o f  d
in C [18]. ‘1’he structure of matrix L not only pro-
vides a deeper physical insight into the computation
tJUt it also nlotivates  a different and somehow simpler
approach for derivation of the algorithm [12].

III. An O(N) Serial Implementation of
Constraint Force Algorithm

An efflcicnt implementation of the ~F algorithm is
based on rewriting Eq. (23) as

Ilere,  the key to achieving greater eficiency  in both
serial and parallel computation is to simply perform,
as much as possible, matrix-vector multiplication in-
stead of matrix-matrix multiplication. In this regard,
the matrices f? and ~ do not need to be computed ex-
plicitly and only the explicit computation of matrix
d is needed. Given 3T, the computational steps of
the algorithm then consist of a sequence of matrix-
ve’ctor multiplications and a vector addition wherein
the matrices, except for d-l, are either diagonal or
bidiagonal.  hlultiplication of a vector by matrix d - *
is equivalent to the solution of a S1’1)  block tridiagonal
system, that is, the solution of

/lFs = i (27)

for .Fs where A! ~ col{ii}C315N,  i = N to 1, and
~ = LZFT =  WTPT1-~PHF7.

q’hus far, the solution procedure has been preseuted
in a coordinate-free form. Before  its implementation.
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however, the tensors  and vectors involved in tile coln-
putation should he projected onto a srritahle  frame.
‘1’he choice of the appropriate frame and the way t hat
tile projection is perfor~ned  significantly affect the ef-
ficiency of the algorithm for both serial and parallel
corn~)utation,

If the rotation of the one-DOF  revolute  joi]lt  i is
given about the z axis of fralne  i then

[ 1
H, == ; E’lR6

‘1’he matrices ffi and L\’, in frame i are given as

‘  IIi =

(1
o
1
0

L o
0

and ‘ it’, =

1

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 1

Multiplication of any vector or matrix by ‘Iii and ‘\V,
does not require any computation hut an appropriate
permutation of the elements of the vector or matrix.
Ilowever, in any other frame W’i is a dense matrix and
its multiplicatioli by another matrix requires a signif-
icant amount of computations. ‘1’his clearly indicates
that any projection of equations should be based on
the maximum exploitation of the sparse structure of
: IV, and ‘f]i .

The matrix A and its elements are given M

A = l’ridiag  [B:, Ail f~~~ ~]

.’\* ~ l’Vj’(l,-l +  F~l~l,~*lP:-l)Wi  i =  A“tOl ( 2 8 )

f~i =  _LV/’l,-*@ilVi+l i= N– ltol (29)

in order to fully exploit the structure of ‘Wi , A i i s
computed in frame i as

A i = ‘\V~’(ii ,-l  + ‘~fll(ili-l)-l ‘~i-l)i Wi ( 3 0 )

By using the parallel axis theorem of Eq. (2), it can
be SIIOWI1  that (Fig, 1)

P,Z ~ 1,~1~ Fi _ 1 = l,~i~ ,1 (31)

l’hat is, the term Pi~ ~ l,-_ll Pi_ 1 is the inverse of the
spatial inertia of link i – 1 about point Oi which is
constant in frame i and hence can be precomputed.
(Note: according to our notation and Fig.1 frame i is
fixed to link i – 1 at its distal end. ) It follows that
tile term 1,-1 + Pi:, l,-_ll P:-1 in llq. (30) is in fact the
sum of inverse of spatial inertias  of link i and link i– 1
about their intersecting point 01. ~he parallel axis

theorem of k:q, (z) can be also used for propagat ion
of inverse of spatial inertias as

I, = S, I,,c, $ >1,- 1 = (S:’) -?:.i(s:’)-l

Iloth Ii and l,= 1 are constant in frame i + 1, llow-
cver, while 1, has a simple and sparse structure, 1,-1
has a dense structure. It is more emcient  to first
project J: 1 and ~i onto frame i as

‘Ji=c(i,  i+l) *+1 Jic(i+l, i)*

(iJi)-l = c(i, i+ l)(’+l J,)-lc(i+ l,i) (33)

‘S1  = c(i, i+ 1) ‘+l  S, (34)

and then compute (’Ii)-l in frame i according to
Eq. (32). l’he  computation of .!3i is also performed
in frame i M follows. I,et us define

V, g 1,-1 F,\V1+l ~ ‘+lW1 =  (i+il:)-l ‘+l  P1 ‘+l J’V~+.l

‘I’he matrix Wi is constant in frame i + 1 and can be
prccomputed,  It is projected onto frame i a.s

‘Wl=C(i, i+l)’~l W: (35)

‘1’hen H, can be computed as

~;i ~ _ lWj’ ‘Wi (36)

whic}i  does not need any computation but  a pern~u-
tation of matrix ‘Vi. To exploit further the sparse
structure of ‘l+’i and ’11,, the rest of the cornprrta-
tions  in F;q. (26) is also projected onto frame i.

‘1’he block tridiagonal  system can be solved by both
block odd-even cyclic reduction algorithm [19-20] and
block l,DLT  factorization [31] in O(N) steps,  IIow-
ever, for serial computation, the latter algorithm is
more efhcient  by a factor of x 2.5 [19].

l’he  computation of the serial ~F algorithm is per-
forlned as follows:

Step 1, gompute  XT by using the N-E algorithm in
[4] with Q = O.

Stc]) 11, ~ornpute ,1” = C O1 {ii}

A. Projection

1. Form c(i, i+ 1) and C(i, i-t 1).

2. Form ‘Cl+l = third column of c(i, i + 1).

3. ~ornpute (l Ji)-l and ‘~i from Eqs. (33)-
(34).

4. ~omprrte  (i{i)-l from Eq. (32).

6



.,

11. coInputt? ti’

-lij;i (39

= @’vi

i– l)’-’ ~:1 (40)

~, = 1 ~~r’r’t ~7?
11 (41)

Stc!~> 111. Form matrix A

A. Colnprrte  l~i, i = iV -1 to 1, from Eqs. (35)-(36).

11. Compute .4i, i = N to 1, from Eq. (30).

Step IV. Solve dFs”= ,~ for ~sc~s~ by using the
I)lock I, I~I,T algorithm

Step V. Compute ~

A  (’ompute  tis = z- ‘T WI’S

1.  Cornl)(}te 3: S col{i F~i} = W1’St!R6~

‘~ji = : Wi’F.$: (4’2)

2. Compute F: ~ col{i F~i} = PFjE!R6~

t F:i = ‘Fji –  C(i, i~ l)(i+lf)j+l Fjt+~)
(43)

3. Compute ti3 8 col{i~.3}  = Z-lf~c!R6~

‘~3  = ( i i i )-liF~i (44)

11. Compute ~ = ‘HTPT(til  – ti3)

1.  Compute ti4 S col{i~j4} = (VI – i3)c!R6~

t~4= iv,l _  i~,3
t : (45)

‘1’he proposed scheme for serial implementation of
the CF algorit}lm seems to be optimal and, in fact,
it is unlikely that any further significant improvem-
ent in efficiency of the algorithm can be achieved.
flowever, despite this optimal inlplementation,  the
CF algorithm is less eficient than other algorithms
for serial computation. Note that Step I is coni-
mon to bot}~ the CF algorithm and the AH1 alg~
rithl[l.  Excluding its cost, the computational cost of
the CF algorithm is (695n~+592a)N  – (408nl+347a)
W]llle the cost of A131 algorithm, as reported in [6], is,
( 199n1-t  174a)N - (198rn+ 173a). IIer~ce, for large N,
the AI)]  algorithm is more efhcient  than the CF algo-
rithm  for serial i~nplementation  by a factor of = 3.4
(ill Ierlns  of total number of operations). Obviously,
for small N (say N < 12), the CF algorithm is also
less efficient than the 0(N2)  or 0(N3)  algorithms.

IV, Parallel Computation of Constraint
Force Algorithm

A .  F’arallelism  in the CF A l g o r i t h m :
Time and Processor Bound in Conlpu-
tation

q’he efficiency of the CF algorithm for parallel com-
putation can be easily a,ssessed by examining the steps
involved in its serial ir~~~)lerl~erltatioll.  13y using the
parallel algorithm of [22], Step I can be performed
in O(l,og  N) -t O(1) with O(N) processors. Steps 11,
111 and V are con]plete]y  parallelizable  since the con~-
putations for each body are decoupled. IIerlce, with
0(N) processors, these steps can be performed with
a con~putational  cost of 0(1). q’he main issue i~l par-
allelizat.ion of the CF algorithm is then the parallel
solution of block tridiagonal  system in Step IV.

As discussed before, the block LD1.T factorization
is the most e~lcient  serial algorithm for solu~ion of
block tridiagonal  systems. Itowever, this algorithm
seems to be strictly serial and, in fact, there is no re-
port on its parallelization.  On the other hand, the
block cyclic reduction algorithm, while not the most
efhcient  for serial  computation, can be paralle]ized  and
performed in O(l,ogN) + 0(1) steps with O(N) pro-
cessors [20].

l’hereforc,  it can be concluded that the entire CF
algorithm. from Step I to Step V can be performed in
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O(f,ogN)  + 0(1) with O(A’) processors, ‘1’his  rel,re-
scnts  a both time and processor-opt itnal parallel alg~
rithm  for the problem.

B. Parallel Solution of SPD Block !lkidi-
agonal Matr ix

A central issue that affects the parallel efficiency
of tllc CF algorithm is the choice of parallel algorithm
for solution of block tricfiagona] system. “]’here are two
variants of the cyclic reduction algorithm: the Odcf -
lve]]  Reduction (OER)  and Odcf-Kven  Elimination
(OEK) algorithms [20]. lhe ORE algorithm, while
less efficient than the OER  algorithm for serial con]-
~~utation, provides additional parallelism (by about a
factor two) in both  computation and cotnmu~licat.ion
using the same number of processors and interconnec-
tion structure as for OERalgoritf~nl  [20]. For solution
of t}le block tridiagonal system in Eq. (27) the O1~E
algorithm is given as follows:

I;ori=Ntol,  Do

A ~ = Ai, fl~ = f~i, and i; = ii (initialization)

For j = 1 to Af = [/.og?Nl, Do

I;or i = N to 1, no

~+ = –Ij/-l(,A~-l: ,+2,_, )-w-li+~J-1

(49)

End DO

E;nd [)0

Fori=Ntol, Do

Solve A~F8i = i? for F’~i (.51)

where (z1 indicates the smallest integer greater than
or equal to x. It should be noted that in Eqs. (48)-(49)
it is more etflcient  to first compute the scalar /d/T  fac-
torization of the dense submatrices rather than their
exi)licit  inverses. The  multiplication of the inverse of

,+2,-, )-l([jj-  1)7a matrix by another matrix, e.g., (A/-l

in h:q, (50), can then be computed as the solution of
a li]lear system with lnu]tiple  right-hand sides.

‘1’lle parallel  irnplementatiorl  of both the Ok; R and
OI;E algorithms for scalar tridiagonal  systems is
straightforward. Ilowever, for block tridiagonal  sys-
tems care should be taken to achieve the optimal ef-
ficiency. In fact, it seems that efficient inlplenlenta-
tion of eit her algorithm for block tridiagonal  systems
has received less attention in the literature. ?Jote
that an implementation strategy starts with a spe-
cific process-  t~processor allocation scheme. 1’0 see
this, consider the parallel implementation by using N
processors, designated aa F’Ri, i = N to 1, Let us fur-
ther assume a perfect mapping of t}le algorithm, i.e.,
a mapping on an architecture with N processors and
a Shuffle-Exchange augmented with Nearest Neighbor
(SEYN) interconnection structure, Ihere are two pos-
sible strategies for parallel imple]nentation  of the OEE
algoritlim  given above. In the first and more obvious
strategy the computation of A: , 11~ , i; , and Fs, as
well as all the intermediate terms in Fqs. (48) – (51)
is assigned to processor Pf?i.  ,Note that this strategy,
which seems to be widely adopted in the literature
for i[l~~)lerl~erltatio~~ of both the OER  and ORI? alg~
rithms,  is optimal for scalar tridiagonal systems,

\$’e have developed a second strategy in which the
terms .4{ and i{ M well as all intermediate terms
involving .4:-1 are computed by PR,. ‘1’hesc two
strategies lead to two different structures for the conl-
putat ion performed by each processor as well as the
communication among processors, ‘1’he impact of tt)e
two strategies on both computation and communicati-
on complexity of the algorithm is discussed in [23].
It will suflice  to mention here that the second strat-
egy, presented below, is more efl!cient for solution of
block tridiagonal  systems since it leads to a slightly
greater computational efTlciency. More importantly,
it also provides a high degree of overla[)ping between
the computation and the commur}ication  which can be
exploited to reduce the communication overhead.

[Ising our strategy, the parallel implementation of
ttle OE; E algorithm is given by:

For j = 1 to Al = [Log~Nl,  Do

For i = 1 to N, Do Parallel (by all 1’R,  ‘s)

1. Compute ldlT  factorization of A{ -1

(52)

2. Solve A~-l  C/-l =  B{-! for C~-l

(53)

3. Compute ~’-1 = (B~-l)TC~-l

(54)



(.55)

5. Send 1$-1 and ~~-1 tO I) Ri+2]-,

6. Solve A~-lF/-l = (IJ/~~,.,)T for j~-l

(56)

(57)

8. Compute
}1:-’ = Ii::;, -,(.A; -’)-lij-l =
(Jy-1)7r{-1

10. compute
7 = (11? -’)7(.4:-1)-1(1)::;,-,  )7’(IJ;_ 2,-L ) ,

11. Send (fl~_2,-,  )T to PR, _2,-,

12.  Compute A; = A{-l – I?!!;,-, – d~~,-,

(60

13, compute i: = r:–] – E::;, _, – H:;,’, -,

14. Send (fl~_2, _, )7 to PRi+2, -,

End Do I’arallel

End 1)0

I’or r’ = 1 to N, Do Parallel (by all P Ri ‘s)

1. Compute /d/ T factorization of A?

2. Solve A~Fji = iM for F~i

End 1)0 Parallel

(61)

(62)

(63

(64

As can be seen, any communication activity of pr~
cessor  PRt  can be overlapped by its immediate conl-
putation activity. That is, communication of 1>-1
and Ej  -1 can be overlapped with computation of

~~ - ‘; con~rntlnicat  ion of G:- 1 and IJ;- 1 call he ovcr-
laI,l)ed with computation of (f~~_2j - 1 )7’: and finally

comlnunication  of (~;~_2j–  ] )T can be overlapped with

conll)utation  of A: and .i~. This overlapping feature
is particularly suitable for implementation on Allhfl)
architectures such as the ]Iypercube  since it can be
exploited to significantly reduce tile communication
overhead.

C. Performance of Perfect Mapping of’
the Parallel CF Algorithm

in [1 1,12], we analyzed the performance of the par-
allel CF algorithm by considering a perfect [napping
of the algorithm, i.e., its implementation on an ar-
chitecture with ,V processors and with a SEFJN ir~-
terconnection. ‘l’his analysis indicated that such an
irll~)lerllelltatioll  will result in a computation cost of
(732rn+653a)l,og2N  + (542n~+439a) and a con~n~uni-
cation cost of (10~-P 134cr)1.0g  N2 -F (60+  490),  where
~ and a stand for the cost (time) of communication
start-up and the cost of communicating a single da-
tum, respectively. Note that in analyzing the conlmu-
nication cost the overlapping of communication and
computation is not considered,

Such a theoretical performance clearly indicates
that the CF algorithm, though not eficient for serial
computation, has excellent features for parallel coln-
putation. l’be parallel CF algorithm not only achieves
the theoretical time lower bound of O(LogN)  + 0(1)
but is also hig}lly practical from an implementation
pers[)ective. First, steps 11, 111, and IV- w}~icb have a
serial computation complexity of O(N)- can be fully
parallelized  and performed in 0(1) with limited near-
est neighbor communication among processors.

Second, the parallel algorithm is highly compute
bound, i.e., its communication cost is much smaller
than its computation cost. Note that the coefficient
of ,L~ indicates the level of conlmunication  activities
which, as can be seen, is very low. Also, a.s stated
before, our strategy for implementing the OEE al-
gorithm is specifically motivated by the overlappil)g
capability which can be exploited to further reduce
the communication overhead. Coupled with the limi-
ted communication activities is the fact that t}le algc-
ritbm has a rather coarse grain size since, particularly
in Steps II-V, each processor performs a matrix-vector
operation or a sequence of such operations before comm-
unicating  to other processors. The coarse grain fea-
ture and limited communication requirements make
the CP algorithm highly suitable for i[tlr~lerllel~tatiol]
on MIMI) parallel architectures such as the Ilyper-
cube.
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D. Strategies for Multilevel Parallel Implm~cm-
tation of tile CF Algorithm on a llypcwcuhc

The parallel implementation of the CF algorithm
with N processors achieves an asymptotically opti-
mal parallel computational complexity and a signifi-
cant specdup  for large N. However, for small N, it
offers a rather limited specdup  [1 1,12], which is due
to the large coefhcient  of the l,og?N  terms. Note that
this phenomenon represents an inherent algorithmic
property in both serial and parallel computation of
the rnultibody  dynamics problerm That serial O(N)
algorithms, though asymptotically optimal, are less
efficient than the serial 0(N2)  or 0(N3) algorithms
for s]nal]  N is also due to the large coefficient of .V,

“1o increase the efficiency of the parallel CF algo-
rithm for small N, the coefficient of the Log?N term
needs to be reduced. This can be achieved by further
exploiting parallelism through a multilevel approach,
A first possible strategy is to exploit fine-grain par-
allelism  in various matrix-vector operations of the al-
gorithm.  IIowever, this strategy would require the
i]nplernentation  of the algorithm on special-purpose
j)arallel  architectures such as the one proposed in [24].

here, an alternative coarse-grain multilevel parallel
computation approach is presented which is partic-
ularly suitable for implementation on the Ilypercube,
This approach is moreover motivated by the fact that,
for small N, it is likely that the number of processors
of tl)e target architecture be muc~:  greater than N.
“1’his naturally suggests the poss)bllity  of increasing
the efficiency of the algorithm by using more of the
processors that would otherwise be idle.

Step IV represents the most computation intensive
part of the parallel algorithm. Therefore, any effective
]nultilcvel  approach should be based on exploitation
of maximum parallelism in computation of this step.
Ilowever, as shown below, further eflciency  can be
also achieved by modifying the computation of this
step so it can be overlapped with other steps of the
parallel algorithm.

l’he OEE  algorithm given by Eqs. (48)–(51) can be
interpreted as a procedure for diagonalization of block
tridiagonal matrix A in which a series of transforlna-
t iorls are applied to both sides of Eq. (27), resulting
in a block diagonal system given by E;q. (51). That
is, Eqs. (48)-(49)—or Eqs. (52)-(54), (56)-(57), and
(59)-(60) of our variant of OEE algorithm- -represent
the diagonalization  of matrix A while Eq. (50)- or
Eqs. (55), (58), and (61 )-–represents the updating of
the right-hand side. Taking this perspective, the com-
putation of the OE1; algorithm can be broken into two
parts: the diagonalization of matrix d, i.e., computa-
tion of Ah’ = col{A~f  }, in which the submatrices .4{
and 11~ are computed; and the updating of the right-

hand side, i.e., computation of ~hf = col{i~f},  bY
using the already computed submatrices  .4: and }J:
‘]’hc diagorlalizatior~ of matrix A and the computation
of XT and .~, i.e., Steps I and II of previous section,
arc fully decoupled and can be performed in parallel in
an overlapped and completely asynchronous fashion.

E. A Two-Level Parallel Computation Strategy

Our first rnultileve] approach, which represents a
two-level parallel computation, is based on the above
decomposition of the CF algorithm. In this approach,
the CF algorithm is implemented on two groups of
processors wherein each group consists of ,V proces-
sors. On the Hypercube,  processors numbered O to
N – 1 form the first group and processors numbered
N to 2N – 1 form the second group. The computation
of matrix A and its reduction are assigned to the first
group while the the computation of 3T and ~ are as-
signed to the second group. Since these two sets of
computation are completely decoupled, the activities
of the two groups are carried in parallel and in fully
asynchronous fashion.

Our timing results indicate that the computation
and reduction of matrix A take more time than the
computation of 3T and ~. Therefore, the overall com-
putation time is dominated by that of computation
and reductiorl  of matrix d and the computation of
3T and ,~ is fully overlapped, This also implies that,
upon computation of A’, the processors of the second
group have to wait for the completion of the reduction
of matrix d by the processors of the first group,

In order to further increase, the computational effi-
ciency, the computation of i: , i.e., Ilq. (5o) or Eqs,
(55), (58), and (61) of our variant of the OEF  alg~
rithm, is also assigned to the second group of proces-
sors. lo do so, the processors of the first group, after
computing (C/-l )T and (l’,~-l)T,  send them to the
processors of the second group. Note that this com-
munication activity is performed asynchronously and,
furthermore, it can also be overlapped with the com-
putation. With this scheme, the computation of i:
is also mostly overlapped with the reduction of ma-
tri~ A. In this two-level strategy, the computation
of Eqs. (62)-(63) as well as the computation of Step
V of the CF algorithm, i.e., Eqs. (42)-(47), are also
assigned to the second group of processors.

F. A Tl~rcmLevel Parallel Computation  Strat-
egy

In the two-level parallel implementation of the CF
algorithm, the reduction of matrixd remains the most
time-consuming part which also dominates the overall
computation time. This hrw motivated us to develop
a second multilevel strategy, or a three-level parallel
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.

computation, to further speed up the computation }Jy
exploiting a higher degree of parallelism in the reduc-
tion of matrix d.
r

Algorithm Time ‘—-Spcedup
(in ms) Absolute

- 3

Relative
S;Rrl 481 1.00

N~Parallel 87 5.53 5.53— — .
2N-Paral~el 69 6.97 1.26.——
3N-Parrdlcl

——.
5,5 %75 1.25

Tal)le I. Computation Time of Serial and
Parallel Multi})ody Ill~I)lcll~[!lltatio~l  of

tl]e CF Algorithm

II) this strategy the parallel computation of the CF
algorithm is performed by using three groups of pr~
cessors.  On the ]Iypercube,  processors number O to
N – 1 form the first group, processors number IV to
2N – 1 for]n the second group, and processors number
2N to 3N – 1 form the third group, “1’hc  computat-
ion of matrix d is assigned to the first group while
the reduction of matrix A is performed by both first
and second groups. This is achieved by decomposing
tlm computation of 13q. (48) and by using processor
P Ri, i < N, of the first group and processor PA$~N
of the second group for computation of .4j Note that
if N is a power of 2 (which is the case considered here)
then processors ~’h?l, i < N, and processor PR~~N
are physically nearest neighbors (i. e., there is a di-
rect link between them), The computation of .TT, ~,
Fqs. (62)-(63), and Step V of the CF algorithm, are
assigned to the third group.

V. Discussion and  Conclusion

lVe have implemented the parallel CF algorithms on
the Intel iPSC/2 Hypercube  installed at UC Irvine,
This is a 32-node Hypercube  with each node having
an 80386 microprocessor, an 80387 arithmetic copr~
cessor, and 4 Mllytes RAhf.  This number of nodes
limited our implementation to the case of a multibody
system with 8 DOF (N = 8) ,

The computation time of serial and multilevel par-
allel CF algorithms are shown in Table I. In order
to evaluate the performance of the parallel CF alg~
rithms, we have implemented the serial algorithm of
~111 on one node of the Hypercube.  As can be seen,
the N- I’arallel  implementation of the CF algorithm
on such hlIMIJ  architecture results in a rather sig-
nificant speed up. This clearly indicates that the CF
algorithm is highly efficient for practical implen~enta-
tion.  Our two- and three-level parallel computation
strategies also improve the efficiency of parallel con~-
putatiorr.  however, it should be emphasized that, for

large N, the parallel CF algorithm wit] result in even
greater speedup in the computation. Currently, we
are implementing the CF algorithm for larger prob-
lems (,V = 16) on JPI,’s  Hypercubc.
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